Векторное произведение - Definition. Was ist Векторное произведение
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:     

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist Векторное произведение - definition

МАТЕМАТИЧЕСКАЯ ОПЕРАЦИЯ МЕЖДУ ДВУМЯ ВЕКТОРАМИ
Векторное произведение векторов; Векторное умножение; Правая тройка векторов; Левая тройка векторов; Оператор произведения
  • Рисунок{{nbsp}}1: Площадь параллелограмма равна модулю векторного произведения
  • Векторное произведение в трёхмерном евклидовом пространстве
  • '''a'''}}, первым шагом является нахождение векторного произведения (модуль которого равен площади одной из сторон), а вторым — нахождение скалярного произведения (которое равно объёму параллелепипеда)
  • правила правой руки]]

Векторное произведение         

вектора а на вектор b - вектор, обозначаемый [а, b] и определяемый так: 1) длина вектора [а, b] равна произведению длин векторов а и b на синус угла φ между ними (берётся тот из двух углов между а и b, который не превосходит π), 2) вектор [а, b] перпендикулярен вектору а и вектору b, 3) тройка векторов а, b, [а, b], согласно с ориентацией пространства, всегда правая или всегда левая (см. Векторное исчисление). В. п. широко применяется в геометрии, механике и физике (например, момент силы F, приложенной к точке М относительно точки О, есть В. п. [, F]).

Лит.; Ильин В. А., Позняк Э. Г., Аналитическая геометрия, М., 1968.

Э. Г. Позняк.

ВЕКТОРНОЕ ПРОИЗВЕДЕНИЕ         
вектора a на вектор b , вектор p=[a, b], или a • b, равный по длине площади параллелограмма, построенного на векторах a и b, перпендикулярный плоскости этого параллелограмма; направление векторного произведения p зависит от выбора координатной системы i, j, k: из конца вектора p кратчайший поворот вектора a к вектору b виден в том же направлении (по часовой стрелке или против), в каком из конца вектора k видно вращение от i к j. Векторное произведение зависит от порядка сомножителей.
Векторное произведение         
Векторное произведение двух векторов в трёхмерном евклидовом пространстве — вектор, перпендикулярный обоим исходным векторам, длина которого численно равна площади параллелограмма, образованного исходными векторами, а выбор из двух направлений определяется так, чтобы тройка из по порядку стоящих в произведении векторов и получившегося вектора была правой. Векторное произведение коллинеарных векторов (в частности, если хотя бы один из множителей — нулевой вектор) считается равным нулевому вектору.

Wikipedia

Векторное произведение

Векторное произведение двух векторов в трёхмерном евклидовом пространстве — вектор, перпендикулярный обоим исходным векторам, длина которого численно равна площади параллелограмма, образованного исходными векторами, а выбор из двух направлений определяется так, чтобы тройка из по порядку стоящих в произведении векторов и получившегося вектора была правой. Векторное произведение коллинеарных векторов (в частности, если хотя бы один из множителей — нулевой вектор) считается равным нулевому вектору.

Таким образом, для определения векторного произведения двух векторов необходимо задать ориентацию пространства, то есть сказать, какая тройка векторов является правой, а какая — левой. При этом не является обязательным задание в рассматриваемом пространстве какой-либо системы координат. В частности, при заданной ориентации пространства результат векторного произведения не зависит от того, является ли рассматриваемая система координат правой или левой. При этом формулы выражения координат векторного произведения через координаты исходных векторов в правой и левой ортонормированной прямоугольной системе координат отличаются знаком.

Векторное произведение не обладает свойствами коммутативности и ассоциативности. Оно является антикоммутативным и, в отличие от скалярного произведения векторов, результат является опять вектором.

Полезно для «измерения» перпендикулярности векторов — модуль векторного произведения двух векторов равен произведению их модулей, если они перпендикулярны, и уменьшается до нуля, если векторы коллинеарны.

Широко используется во многих технических и физических приложениях. Например, момент импульса и сила Лоренца математически записываются в виде векторного произведения.